Enzymatic properties of the Caenorhabditis elegans Dna2 endonuclease/helicase and a species-specific interaction between RPA and Dna2
نویسندگان
چکیده
In both budding and fission yeasts, a null mutation of the DNA2 gene is lethal. In contrast, a null mutation of Caenorhabditis elegans dna2+ causes a delayed lethality, allowing survival of some mutant C.elegans adults to F2 generation. In order to understand reasons for this difference in requirement of Dna2 between these organisms, we examined the enzymatic properties of the recombinant C.elegans Dna2 (CeDna2) and its interaction with replication-protein A (RPA) from various sources. Like budding yeast Dna2, CeDna2 possesses DNA-dependent ATPase, helicase and endonuclease activities. The specific activities of both ATPase and endonuclease activities of the CeDna2 were considerably higher than the yeast Dna2 (approximately 10- and 20-fold, respectively). CeDna2 endonuclease efficiently degraded a short 5' single-stranded DNA tail (<10 nt) that was hardly cleaved by ScDna2. Both endonuclease and helicase activities of CeDna2 were stimulated by CeRPA, but not by human or yeast RPA, demonstrating a species-specific interaction between Dna2 and RPA. These and other enzymatic properties of CeDna2 described in this paper may shed light on the observation that C.elegans is less stringently dependent on Dna2 for its viability than Saccharomyces cerevisiae. We propose that flaps generated by DNA polymerase delta-mediated displacement DNA synthesis are mostly short in C.elegans eukaryotes, and hence less dependent on Dna2 for viability.
منابع مشابه
Dynamic removal of replication protein A by Dna2 facilitates primer cleavage during Okazaki fragment processing in Saccharomyces cerevisiae.
Eukaryotic Okazaki fragments are initiated by a RNA/DNA primer, which is removed before the fragments are joined. Polymerase delta displaces the primer into a flap for processing. Dna2 nuclease/helicase and flap endonuclease 1 (FEN1) are proposed to cleave the flap. The single-stranded DNA-binding protein, replication protein A (RPA), governs cleavage activity. Flap-bound RPA inhibits FEN1. Thi...
متن کاملPif1 helicase lengthens some Okazaki fragment flaps necessitating Dna2 nuclease/helicase action in the two-nuclease processing pathway.
We have developed a system to reconstitute all of the proposed steps of Okazaki fragment processing using purified yeast proteins and model substrates. DNA polymerase delta was shown to extend an upstream fragment to displace a downstream fragment into a flap. In most cases, the flap was removed by flap endonuclease 1 (FEN1), in a reaction required to remove initiator RNA in vivo. The nick left...
متن کاملDna2 nuclease-helicase structure, mechanism and regulation by Rpa
The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narro...
متن کاملProcessing of G4 DNA by Dna2 helicase/nuclease and replication protein A (RPA) provides insights into the mechanism of Dna2/RPA substrate recognition.
The polyguanine-rich DNA sequences commonly found at telomeres and in rDNA arrays have been shown to assemble into structures known as G quadruplexes, or G4 DNA, stabilized by base-stacked G quartets, an arrangement of four hydrogen-bonded guanines. G4 DNA structures are resistant to the many helicases and nucleases that process intermediates arising in the course of DNA replication and repair....
متن کاملDNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells.
The 5'-3' resection of DNA ends is a prerequisite for the repair of DNA double strand breaks by homologous recombination, microhomology-mediated end joining, and single strand annealing. Recent studies in yeast have shown that, following initial DNA end processing by the Mre11-Rad50-Xrs2 complex and Sae2, the extension of resection tracts is mediated either by exonuclease 1 or by combined activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005